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Abstract

Probabilistic forecasts of a continuous variable take the form of predictive densities or pre-
dictive cumulative distribution functions. We propose a diagnostic approach to the evaluation
of predictive performance that is based on the paradigm of maximizing the sharpness of the

predictive distributions subject to calibration. Calibration refers to the statistical consistency
between the distributional forecasts and the observations and is a joint property of the predic-
tions and the events that materialize. Sharpness refers to the concentration of the predictive
distributions and is a property of the forecasts only. A simple game-theoretic framework allows
us to distinguish probabilistic calibration, exceedance calibration and marginal calibration. We
propose and study tools for checking calibration and sharpness, among them the probability in-
tegral transform (PIT) histogram, marginal calibration plots, the sharpness diagram and proper
scoring rules. The diagnostic approach is illustrated by an assessment and ranking of proba-
bilistic forecasts of wind speed at the Stateline wind energy center in the US Pacific Northwest.
In combination with cross-validation or in the time series context, our proposal provides very
general, nonparametric alternatives to the use of information criteria for model diagnostics and
model selection.

Keywords: Cross-validation; Density forecast; Ensemble prediction system; Forecast verifi-
cation; Model diagnostics; Posterior predictive assessment; Predictive distribution; Prequential
principle; Probability integral transform; Proper scoring rule

1 Introduction

A major human desire is to make forecasts for the future. Forecasts characterize and reduce but
generally do not eliminate uncertainty. Consequently, forecasts should be probabilistic in nature,
taking the form of probability distributions over future events (Dawid 1984). Indeed, over the past
two decades the quest for good probabilistic forecasts has become a driving force in meteorology.
Major economic forecasts such as the quarterly Bank of England inflation report are issued in terms
of predictive distributions, and the rapidly growing area of financial risk management is dedicated
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to probabilistic forecasts of portfolio values (Duffie and Pan 1997). In the statistical literature,
advances in Markov chain Monte Carlo methodology (see, for example, Besag, Green, Higdon and
Mengersen 1995) have led to explosive growth in the use of predictive distributions, mostly in the
form of Monte Carlo samples from the posterior predictive distribution of quantities of interest.

It is often crucial to assess the predictive ability of forecasters, or to compare and rank compet-
ing forecasting methods. Atmospheric scientists talk of forecast verification when they refer to this
process (Jolliffe and Stephenson 2003), and much of the underlying methodology has been developed
by meteorologists. There is also a relevant strand of work in the econometrics literature (Diebold
and Mariano 1995; Christoffersen 1998; Diebold, Gunther and Tay 1998). Murphy and Winkler
(1987) proposed a general framework for the evaluation of point forecasts that uses a diagnostic ap-
proach based on graphical displays, summary measures and scoring rules. In this paper, we consider
probabilistic forecasts (as opposed to point forecasts) of continuous and mixed discrete-continuous
variables, such as temperature, wind speed, precipitation, gross domestic product, inflation rates
and portfolio values. In this situation, probabilistic forecasts take the form of predictive densities
or predictive cumulative distribution functions, and the diagnostic approach faces a challenge, in
that the forecasts take the form of probability distributions while the observations are real-valued.

We consider a simple game-theoretic framework for the evaluation of predictive performance. At
times t = 1, 2, . . ., nature chooses a distribution, Gt, which we think of as the true data generating
process, and the forecaster chooses a probabilistic forecast in the form of a predictive cumulative
distribution function, Ft. The observation, xt, is a random number with distribution Gt. If

Ft = Gt for all t (1)

we talk of a perfect forecaster. In practice, the true distribution, Gt, remains hypothetical, and the
predictive distribution, Ft, is understood as an expert opinion which may or may not derive from
a statistical prediction algorithm. In accordance with Dawid’s (1984) prequential principle, the
predictive distributions need to be assessed on the basis of the forecast-observation pairs (Ft, xt)
only, irrespective of their origins. Dawid (1984) and Diebold, Gunther and Tay (1998) proposed
the use of the probability integral transform or PIT value,

pt = Ft(xt), (2)

for doing this. If the forecaster is perfect and Ft is continuous, then pt has a uniform distribu-
tion. Hence, the uniformity of the probability integral transform is a necessary condition for the
forecaster to be perfect, and checks for its uniformity have formed a cornerstone of forecast eval-
uation, particularly in econometrics and meteorology. In the classical time series framework, each
Ft corresponds to a one-step ahead forecast, and checks for the uniformity of the probability inte-
gral transform have been supplemented by checks for its independence (Frühwirth-Schnatter 1996;
Diebold et al. 1998).

Hamill (2001) gave a thought-provoking example of a forecaster for whom the histogram of the
PIT values is essentially uniform, even though every single probabilistic forecast is biased. His
example aimed to show that the uniformity of the PIT values is a necessary but not a sufficient
condition for the forecaster to be perfect. To fix the idea, we consider a simulation study based
on the scenario described in Table 1. At times t = 1, 2, . . ., nature chooses the distribution Gt =
N (µt, 1) where µt is standard normal. In the context of weather forecasts, we might think of µt as
an accurate description of the latest observable state of the atmosphere. The perfect forecaster is
an expert meteorologist who conditions on the current state, µt, and issues a perfect probabilistic
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Table 1: Scenario for the simulation study. At times t = 1, 2, . . ., nature chooses a distribution,
Gt, the forecaster chooses a probabilistic forecast, Ft, and the observation is a random number, xt,
with distribution Gt. We write N (µ, σ2) for the normal distribution with mean µ and variance σ2,
and we identify distributions and cumulative distribution functions, respectively. The sequences
(µt)t=1,2,..., (τt)t=1,2,... and (δt, σ

2
t )t=1,2,... are independent identically distributed and independent

of each other.

Nature Gt = N (µt, 1) where µt ∼ N (0, 1)

Perfect forecaster Ft = N (µt, 1)

Climatological forecaster Ft = N (0, 2)

Unfocused forecaster Ft = 1

2
(N (µt, 1) + N (µt + τt, 1))

where τt = ±1 with probability 1

2
each

Hamill’s forecaster Ft = N (µt + δt, σ
2
t )

where (δt, σ
2
t ) = (1

2
, 1), (− 1

2
, 1) or (0, 169

100
) with probability 1

3
each

forecast, Ft = Gt. The climatological forecaster takes the unconditional distribution, Ft = N (0, 2),
as probabilistic forecast. The unfocused forecaster observes the current state, µt, but adds a
mixture component to the forecast, which can be interpreted as distributional bias. A similar
comment applies to Hamill’s forecaster. Clearly, our forecasters are caricatures of operational
weather forecasters; yet, climatological reference forecasts and conditional biases are frequently
observed in practice. For simplicity, we assume that the states, µt, are independent. Extensions to
serially dependent states are straightforward and will be discussed below. The observation, xt, is a
random draw from Gt, and we repeat the prediction experiment 10000 times. Figure 1 shows that
the PIT histograms for the four forecasters are essentially uniform; furthermore, the PIT values
are independent, and this remains true under serially dependent states, with the single exception
of the climatological forecaster. The respective sample autocorrelation functions are illustrated in
Figures 2 and 3.

In view of the reliance on the probability integral transform in the extant literature, this is
a disconcerting result. As Diebold, Gunther and Tay (1998) pointed out, the perfect forecaster
is preferred by all users, regardless of the respective loss function. Yet, the probability integral
transform is unable to distinguish between the perfect forecaster and her competitors. To address
these limitations, we propose a diagnostic approach to the evaluation of predictive performance
that is based on the paradigm of maximizing the sharpness of the predictive distributions subject

to calibration. Calibration refers to the statistical consistency between the distributional forecasts
and the observations, and is a joint property of the predictions and the observed values. Sharpness
refers to the concentration of the predictive distributions and is a property of the forecasts only.
The more concentrated the predictive distributions, the sharper the forecasts, and the sharper the
better, subject to calibration.

The remainder of the paper is organized as follows. Section 2 develops our game-theoretic
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Figure 1: Probability integral transform (PIT) histograms.

framework for the assessment of predictive performance. We introduce the notions of probabilistic
calibration, exceedance calibration and marginal calibration, give examples and counterexamples,
and discuss a conjectured sharpness principle. In Section 3, we propose diagnostic tools such as
marginal calibration plots and sharpness diagrams that complement the PIT histogram. Proper
scoring rules address calibration as well as sharpness and allow for the ranking of competing forecast
procedures. Section 4 turns to a case study on probabilistic forecasts at the Stateline wind energy
center in the US Pacific Northwest. The diagnostic approach yields a clear-cut ranking of statistical
algorithms for forecasts of wind speed, and suggests forecast improvements that can be addressed in
future research. Similar approaches hold considerable promise as very general, nonparametric tools
for statistical model selection and model diagnostics. The paper closes with a discussion in Section
5 that emphasizes the need for routine assessments of sharpness in the evaluation of predictive
performance.

2 Modes of calibration

We consider probabilistic forecasting as a game played between nature and the forecaster. At times
or instances t = 1, 2, . . ., nature chooses a distribution, Gt, and the forecaster chooses a probabilistic
forecast in the form of a predictive cumulative distribution function, Ft. The observation, xt, is a
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Figure 2: Sample autocorrelation functions for the probability integral transform.
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Figure 3: Same as Figure 2 except that the states, µt, are now serially dependent, following a
stationary Gaussian autoregression of order 1 with autoregressive parameter 1

2
.
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random number with distribution Gt. For simplicity, we suppose that Ft and Gt are continuous and
strictly increasing on R. In this framework, calibration refers to the asymptotic compatibility of the
sequences (Gt)t=1,2,... and (Ft)t=1,2,..., which correspond to the data generating mechanism and to
the forecasts, respectively. Our approach seems slightly broader than Dawid’s (1984) prequential
framework, since we think of (Ft)t=1,2,... as a general, countable sequence of forecasts, with the
index refering to time, space or subjects, depending on the prediction problem at hand.

2.1 Probabilistic calibration, exceedance calibration and marginal calibration

Henceforth, (Ft)t=1,2,... and (Gt)t=1,2,... denote sequences of continuous and strictly increasing cumu-
lative distribution functions, possibly depending on stochastic parameters. We think of (Gt)t=1,2,...

as the true data generating process and of (Ft)t=1,2,... as the associated sequence of probabilistic
forecasts. The following definition refers to the asymptotic compatibility between the data gener-
ating process and the predictive distributions in terms of three major modes of calibration. Given
that (Ft)t=1,2,... and (Gt)t=1,2,... might depend on stochastic parameters, convergence is understood
as almost sure convergence and is denoted by an arrow.

Definition 1 (modes of calibration)

(a) The sequence (Ft)t=1,2,... is probabilistically calibrated relative to the sequence (Gt)t=1,2,... if

1

T

T
∑

t=1

Gt ◦ F−1
t (p) −→ p for all p ∈ (0, 1). (3)

(b) The sequence (Ft)t=1,2,... is exceedance calibrated relative to (Gt)t=1,2,... if

1

T

T
∑

t=1

G−1
t ◦ Ft(x) −→ x for all x ∈ R. (4)

(c) The sequence (Ft)t=1,2,... is marginally calibrated relative to (Gt)t=1,2,... if the limits Ḡ(x) =
limT→∞

1

T

∑T
t=1 Gt(x) and F̄ (x) = limT→∞

1

T

∑T
t=1 Ft(x) exist and equal each other for all

x ∈ R, and if the common limit distribution places all mass on finite values.

(d) The sequence (Ft)t=1,2,... is strongly calibrated relative to (Gt)t=1,2,... if it is probabilistically
calibrated, exceedance calibrated and marginally calibrated.

If each subsequence of (Ft)t=1,2,... is probabilistically calibrated relative to the associated sub-
sequence of (Gt)t=1,2,..., we talk of complete probabilistic calibration. Similarly, we define com-
pleteness for exceedance calibration, marginal calibration and strong calibration. In the examples
below, calibration will generally be complete. Probabilistic calibration is essentially equivalent to
the uniformity of the probability integral transform. Exceedance calibration is defined in terms of
thresholds, and marginal calibration requires that the limit distributions Ḡ and F̄ exist and equal
each other. The existence of Ḡ is a natural assumption in meteorological problems and corresponds
to the existence of a stable climate. Hence, marginal calibration can be interpreted in terms of the
equality of actual climatology and forecast climatology.

Various authors have studied calibration in the context of probability forecasts for sequences
of binary events (Dawid 1982, 1985a, 1985b; Oakes 1985; Schervish 1985, 1989). The progress
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is impressive and culminates in the paper by Foster and Vohra (1998), who viewed the prediction
problem as a game played against nature as well. Krzysztofowicz (1999) discussed calibration in the
context of Bayesian forecasting systems, and Krzysztofowicz and Sigrest (1999) studied calibration
for quantile forecasts of quantitative precipitation. However, we are unaware of any prior discussion
of notions of calibration for probabilistic forecasts of continuous variables.

2.2 Examples

The examples in this section illustrate the aforementioned modes of calibration and discuss some of
the forecasters in our initial simulation study. Unless noted otherwise, (µt)t=1,2,..., (σt)t=1,2,... and
(τt)t=1,2,... denote independent sequences of independent identically distributed random variables.
We write N (µ, σ2) for the normal distribution with mean µ and variance σ2, identify distribu-
tions and cumulative distribution functions, respectively, and let Φ denote the standard normal
cumulative.

Example 1 (climatological forecaster)

Gt = N (µt, 1) where µt ∼ N (0, 1)
Ft = N (0, 2) for all t

The climatological forecaster is probabilistically calibrated and marginally calibrated, but not ex-
ceedance calibrated. The claim for marginal calibration is obvious. Putting p = Ft(x) in (3), we
see that probabilistic calibration holds, too. However,

1

T

T
∑

t=1

G−1
t ◦ Ft(x) =

1

T

T
∑

t=1

[

Φ−1

(

Φ

(

x√
2

))

+ µt

]

−→ x√
2

for x ∈ R, in violation of exceedance calibration.

The characteristic property in Example 1 is that the predictive distributions, Ft, all equal na-
ture’s limiting distribution, Ḡ. We call any forecaster with this property a climatological forecaster.
For climatological forecasts, probabilistic calibration is essentially equivalent to marginal calibra-
tion. Indeed, if Ḡ is continuous and strictly increasing, then putting p = Ft(x) = Ḡ(x) in (3)
recovers the marginal calibration condition. In practice, climatological forecasts are constructed
from historical records of the observations, and they are often used as reference forecasts.

Example 2 (unfocused forecaster)

Gt = N (µt, 1) where µt ∼ N (0, 1)
Ft = 1

2
(N (µt, 1) + N (µt + τt, 1)) where pr(τt = ±1) = 1

2

The unfocused forecaster is probabilistically calibrated relative to (Gt)t=1,2,..., but neither ex-
ceedance calibrated nor marginally calibrated. To prove the claim for probabilistic calibration,
put Φ±(x) = 1

2
(Φ(x) + Φ(x ∓ 1)) and note that

1

T

T
∑

t=1

Gt ◦ F−1
t (p) −→ 1

2

[

Φ ◦ Φ−1
+ (p) + Φ ◦ Φ−1

− (p)
]

= p,

7



where the equality follows upon putting p = Φ+(x), substituting and simplifying. Exceedance
calibration does not hold, because

1

T

T
∑

t=1

G−1
t ◦ Ft(x) −→ 1

2

[

Φ−1 ◦ Φ+(x) + Φ−1 ◦ Φ−(x)
]

6= x

in general. The marginal calibration condition is violated, because nature’s limit distribution,
Ḡ = N (0, 2), does not equal F̄ = 1

2
N (0, 2) + 1

4
N (−1, 2) + 1

4
N (1, 2).

Example 3 (sign-biased forecaster)

Gt = N (τt, 1) where pr(τt = ±1) = 1

2

Ft = N (−τt, 1)

The sign-biased forecaster is exceedance calibrated and marginally calibrated, but not probabilis-
tically calibrated. Specifically,

1

T

T
∑

t=1

Gt ◦ F−1
t (p) −→ 1

2

[

Φ
(

Φ−1(p) − 2
)

+ Φ
(

Φ−1(p) + 2
)]

6= p

in general. However,

1

T

T
∑

t=1

G−1
t ◦ Ft(x) −→ 1

2

[

(x + 2) + (x − 2)
]

= x

for x ∈ R. The claim for marginal calibration is obvious.

Example 4 (mean-biased forecaster)

Gt = N (µt, 1) where µt ∼ N (0, 1)
Ft = N (µt + τt, 1) where pr(τt = ±1) = 1

2

The mean-biased forecaster is exceedance calibrated but neither probabilistically calibrated nor
marginally calibrated. Specifically,

1

T

T
∑

t=1

Gt ◦ F−1
t (p) −→ 1

2

[

Φ
(

Φ−1(p) − 1
)

+ Φ
(

Φ−1(p) + 1
)]

6= p

in general, while

1

T

T
∑

t=1

G−1
t ◦ Ft(x) −→ 1

2

[

(x + 1) + (x − 1)
]

= x

for x ∈ R. The marginal calibration condition does not hold, because nature’s limit distribution,
Ḡ = N (0, 2), differs from F̄ = 1

2
(N (−1, 2) + N (1, 2)).

We now return to the climatological forecaster in Example 1, with the roles of nature and the
forecaster interchanged.
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Table 2: The three major modes of calibration are logically independent of each other and may
occur in any combination. For instance, the sign-biased forecaster in Example 3 is exceedance
calibrated (E) and marginally calibrated (M) but not probabilistically calibrated (P).

Properties Example

PEM Ft = Gt = N (0, 1)

PEM Ft = Gt = N (t, 1)

PEM Example 1 (climatological forecaster)

PEM Example 2 (unfocused forecaster)

PEM Example 3 (sign-biased forecaster)

PEM Example 4 (mean-biased forecaster)

PEM Example 5 (reverse climatological forecaster)

PEM Gt = N (t, 1); Ft = N (−t, 1)

Example 5 (reverse climatological forecaster)

Gt = N (0, 2) for all t
Ft = N (µt, 1) where µt ∼ N (0, 1)

The reverse climatological forecaster is marginally calibrated, but neither probabilistically cali-
brated nor exceedance calibrated. To prove the claim for probabilistic calibration, let Z be a
standard normal random variable and note that

1

T

T
∑

t=1

Gt ◦ F−1
t (p) =

1

T

T
∑

t=1

Φ

(

Φ−1(p) + µt√
2

)

−→ E

[

Φ

(

Φ−1(p) + Z√
2

)]

=

∫ ∞

−∞

ϕ(z) Φ

(

Φ−1(p) − z√
2

)

dz 6= p

in general. Exceedance calibration does not hold, because

1

T

T
∑

t=1

G−1
t ◦ Ft(x) =

1

T

T
∑

t=1

√
2 Φ−1(Φ(x − µt)) −→

√
2x

for x ∈ R. The claim for marginal calibration is obvious.

The examples in this section show that probabilistic calibration, exceedance calibration and
marginal calibration are logically independent of each other and may occur in any combination.
Table 2 summarizes the respective results.

2.3 Hamill’s forecaster

We add a discussion of Hamill’s forecaster. As described in Table 1, Hamill’s forecaster is a master
forecaster who assigns the prediction task with equal probability to any of three student forecasters,
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each of whom is biased. In response to nature’s choice, Gt = N (µt, 1), the student forecasters issue
the predictive distributions Ft = N (µt − 1

2
, 1), Ft = N (µt +

1

2
, 1) and Ft = N (µt,

169

100
), respectively.

For Hamill’s forecaster,

1

T

T
∑

t=1

Gt ◦ F−1
t (p) −→ 1

3

[

Φ

(

Φ−1(p) − 1

2

)

+ Φ

(

13

10
Φ−1(p)

)

+ Φ

(

Φ−1(p) +
1

2

)]

= p + ε(p)

where |ε(p)| ≤ 0.0032 for all p but ε(p) 6= 0 in general. The probabilistic calibration condition
(3) is violated, but only slightly so, resulting in deceptively uniform histograms of the probability
integral transforms. As for exceedance calibration, note that

1

T

T
∑

t=1

G−1
t ◦ Ft(p) −→ 1

3

[(

x +
1

2

)

+
10

13
x +

(

x − 1

2

)]

=
12

13
x

for x ∈ R. Hence, Hamill’s forecaster is not exceedance calibrated either, nor marginally calibrated,
given that Ḡ = N (0, 2) while F̄ = 1

3
(N (−1

2
, 2) + N ( 1

2
, 2) + N (0, 269

100
)).

2.4 Sharpness principle

Ideally, probabilistic forecasts aim to honor the data generating process, resulting in the equality
(1) of nature’s proposal distribution, Gt, and the predictive distribution, Ft, that characterizes
the perfect forecaster. Operationally, we adopt the paradigm of maximizing the sharpness of the
predictive distributions subject to calibration. Our conjectured sharpness principle contends that
the two goals — perfect forecasts and the maximization of sharpness subject to calibration — are
indeed equivalent. This conjectured equivalence could be explained in two distinct ways. One
explanation is that sufficiently strong notions of calibration imply asymptotic equivalence to the
perfect forecaster. We are unaware of any strongly calibrated forecasts that are not minor variants of
perfect forecasts, and it would be interesting to find such an example, or to prove that sequences of
this type do not exist. An alternative and weaker explanation states that any sufficiently calibrated
forecaster is at least as spread out as the perfect forecaster.

With respect to this latter explanation, none of probabilistic, exceedance or marginal calibration
alone is sufficiently stark. In the examples below it will be convenient to consider a probabilistic
calibration condition,

1

T

T
∑

t=1

Gt ◦ F−1
t (p) = p for all p ∈ (0, 1), (5)

for finite sequences (Ft)1≤t≤T relative to (Gt)1≤t≤T , and similarly for exceedance calibration and
marginal calibration. Using randomization, the examples extend to countable sequences in obvious
ways. Now suppose that σ > 0, a > 1, 0 < λ < 1/a and T = 2. Let G1 and G2 be continuous and
strictly increasing distributions functions with associated densities that are symmetric about zero
and have finite variance, var(G1) = σ2 and var(G2) = λσ2. If we define

F1(x) =
1

2

(

G1(x) + G2

(

x

a

))

, F2(x) = F1(ax),

then

var(F1) + var(F2) =
1

2

(

1 +
1

a2

)

(1 + a2λ2)σ2 < (1 + λ2)σ2 = var(G1) + var(G2),

10



even though the finite probabilistic calibration condition (5) holds. A similar example can be given
for exceedance calibration. Suppose that σ > 0, 0 < a < 1 and

0 < λ < a

(

3 + a

1 + 3a

)1/2

.

Let G1 and G2 be as above and define

F1(x) = G1

(

2x

1 + a

)

, F2(x) = G2

(

2ax

1 + a

)

.

Then

var(F1) + var(F2) =
1

4
(1 + a)2

(

1 +
λ2

a2

)

σ2 < (1 + λ2)σ2 = var(G1) + var(G2).

even though the finite exceedance calibration condition holds. Finally, the reverse climatologi-
cal forecaster shows that a forecaster can be marginally calibrated yet sharper than the perfect
forecaster.

For climatological forecasts, however, finite probabilistic calibration and finite marginal calibra-
tion are equivalent, and a weak form of the sharpness principle holds.

Theorem 1 Suppose that G1, . . . , GT and F1 = · · · = FT = F have second moments and satisfy
the finite probabilistic calibration condition (5). Then

1

T

T
∑

t=1

var(Ft) = var(F ) ≥ 1

T

T
∑

t=1

var(Gt)

with equality if and only if E(G1) = · · · = E(GT ).

The proof of Theorem 1 is given in the appendix. We are unaware of any other results in this
direction; in particular, we do not know whether a non-climatological forecaster can be probabilis-
tically calibrated and marginally calibrated yet sharper than the perfect forecaster.

3 Diagnostic tools

We now discuss diagnostic tools for the evaluation of predictive performance. In accordance with
Dawid’s (1984) prequential principle, the assessment of probabilistic forecasts needs to be based
on the predictive distributions and the observations only. Previously, we defined notions of cal-
ibration in terms of the asymptotic consistency between the probabilistic forecasts and the data
generating distributions, which are unavailable in practice. However, we obtain sample versions
by substituting empirical distribution functions based on the observations. In the following, this
program is carried out for probabilistic calibration and marginal calibration. Probabilistic calibra-
tion is essentially equivalent to the uniformity of the probability integral transform, and marginal
calibration corresponds to the equality of observed climate and forecast climate. Exceedance cal-
ibration does not allow for a sample analogue, given the ambiguities in inverting a step function.
We discuss graphical displays of sharpness and propose the use of proper scoring rules, that assign
numerical measures of predictive performance, address calibration as well as sharpness, and find
key applications in the ranking of competing forecast procedures.
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3.1 Assessing probabilistic calibration

The probability integral transform (PIT) is the value that the predictive cumulative distribution
function attains at the observation. Specifically, if Ft is the predictive distribution and xt materi-
alizes, the transform is defined as pt = Ft(xt). The literature usually refers to Rosenblatt (1952),
even though the probability integral transform can be traced back at least to Pearson (1933). The
connection to probabilistic calibration is established by substituting the empirical distribution func-
tion 1{xt ≤ x} for the data generating distribution Gt(x), x ∈ R in the probabilistic calibration
condition (3), and noting that the indicator functions 1{xt ≤ F−1

t (p)} and 1{pt ≤ p} are identi-
cal. The following theorem characterizes the asymptotic uniformity of the empirical sequence of
probability integral transforms in terms of probabilistic calibration. We state this result under the
assumption of a ∗-mixing sequence of observations (Blum, Hanson and Koopmans 1963).

Theorem 2 Let (Ft)t=1,2,... and (Gt)t=1,2,... be sequences of continuous, strictly increasing distri-
bution functions. Suppose that xt has distribution Gt and that the xt form a ∗-mixing sequence of
random variables. Then

1

T

T
∑

t=1

1{pt < p} −→ p almost surely for all p (6)

if and only if (Ft)t=1,2,... is probabilistically calibrated with respect to (Gt)t=1,2,....

The proof of this result is given in the appendix, and the equivalence remains valid under
alternative weak dependence assumptions for the observations. Essentially, the theorem states
that the asymptotic uniformity of the PIT histogram is a necessary and sufficient condition for
probabilistic calibration. Indeed, following the lead of Dawid (1984) and Diebold, Gunther and
Tay (1998), checks for the uniformity of the PIT values have formed a cornerstone of forecast
evaluation.

Uniformity is usually evaluated in an exploratory sense, and one way of doing this is by plotting
the empirical cumulative distribution function of the PIT values and comparing to the identity
function. This approach is adequate for small sample sizes and notable departures from unifor-
mity, and its proponents include Staël von Holstein (1970, p. 142), Seillier-Moiseiwitsch (1993),
Hoeting (1994, p. 33), Frühwirth-Schnatter (1996), Clements and Smith (2000), Moyeed and Pa-
pritz (2002), Wallis (2003) and Boero and Marrocu (2004). Histograms of the probability integral
transform accentuate departures from uniformity when the sample size is large and the deviations
from uniformity are small. This alternative type of display was used by Diebold, Gunther and
Tay (1998), Weigend and Shi (2000), Bouwens, Giot, Grammig and Veredas (2004) and Gneiting,
Raftery, Westveld and Goldman (2005), among others, and 10 or 20 histogram bins generally seem
adequate. Figure 1 uses 20 bins and shows the PIT histograms for the various forecasters in our
initial simulation study. The histograms are essentially uniform. Table 3 shows the empirical cov-
erage of the associated central 50% and 90% prediction intervals. This information is redundant,
since the empirical coverage can be read off the PIT histogram, namely as the area under the 10
and 18 central bins, respectively.

Probabilistic weather forecasts are typically based on ensemble prediction systems, which gen-
erate a set of perturbations of the best estimate of the current state of the atmosphere, run each of
them forward in time using a numerical weather prediction model, and use the resulting set of fore-
casts as a sample from the predictive distribution of future weather quantities (Palmer 2002). The
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Table 3: Empirical coverages of central prediction intervals. The nominal coverages are 50% and
90%, respectively.

Interval 50% 90%

Perfect forecaster 51.2% 90.0%
Climatological forecaster 51.3% 90.7%
Unfocused forecaster 50.1% 90.1%
Hamill’s forecaster 50.9% 89.5%

principal device for assessing the calibration of ensemble forecasts is the verification rank histogram
or Talagrand diagram, proposed independently by Anderson (1996), Hamill and Colucci (1997) and
Talagrand, Vautard and Strauss (1997), and extensively used since. To obtain a verification rank
histogram, find the rank of the observation when pooled within the ordered ensemble values and
plot the histogram of the ranks. If we identify the predictive distribution with the empirical cu-
mulative distribution function of the ensemble values, this technique is seen to be equivalent to
plotting a PIT histogram. A similar procedure could be drawn on fruitfully to assess samples from
posterior predictive distributions obtained by Markov chain Monte Carlo techniques. Shephard
(1994, p. 129) gave an instructive example of how this could be done.

Visual inspection of a PIT or rank histogram often provides hints to the reasons for forecast
deficiency. Hump shaped histograms indicate overdispersed predictive distributions with prediction
intervals that are too wide on average. U-shaped histograms often correspond to predictive distri-
butions that are too narrow. Triangle-shaped histograms are seen when the predictive distributions
are biased. Formal tests of uniformity can also be employed and have been studied by Anderson
(1996), Talagrand, Vautard and Strauss (1997), Noceti, Smith and Hodges (2003), Wallis (2003)
and Garratt, Lee, Pesaran and Shin (2003), among others. However, the use of formal tests is often
hindered by complex dependence structures, particularly in cases in which the probability integral
transforms are spatially aggregated. Hamill (2001) gave a thoughtful discussion of the associated
issues and potential fallacies.

In the context of time series, the observations are sequential, and the predictive distributions
correspond to sequential k-step ahead forecasts. The probability integral transforms for perfect k-
step ahead forecasts are at most (k−1)-dependent, and this assumption can be checked empirically,
by plotting the sample autocorrelation function for the PIT values and the higher moments thereof.
This approach was applied by Diebold, Gunther and Tay (1998), Weigend and Shi (2000), Bauwens
et al. (2004) and Campbell and Diebold (2005), among others. Figures 2 and 3 show the sample
autocorrelation functions for the PIT values and the various forecasters in our initial simulation
study, for independent states, µt, and for serially dependent states, respectively. Smith (1985),
Frühwirth-Schnatter (1996) and Berkowitz (2001) proposed an assessment of independence based
on the transformed PIT values, Φ−1(pt), which are Gaussian under the assumption of perfect
forecasts. This further transformation has obvious advantages when formal tests of independence
are employed, and seems to make little difference otherwise.

13



3.2 Assessing marginal calibration

Marginal calibration concerns the equality of actual climate and forecast climate. To assess marginal
calibration, we propose a comparison of the empirical cumulative distribution function,

ĜT (x) =
1

T

T
∑

t=1

1{xt ≤ x}, x ∈ R, (7)

to the forecast climate, represented by the average predictive cumulative distribution function,

F̄T (x) =
1

T

T
∑

t=1

Ft(x), x ∈ R. (8)

Indeed, if we substitute the indicator function 1{xt ≤ x} for the data generating distribution Gt(x),
x ∈ R in the definition of marginal calibration, we are led to the asymptotic equality of ĜT and F̄T ,
respectively. Theorem 3 provides a rigorous version of this correspondence. Under mild regularity
conditions, marginal calibration is a necessary and sufficient condition for the asymptotic equality
of ĜT and F̄T . The proof of this result is deferred to the appendix.

Theorem 3 Let (Ft)t=1,2,... and (Gt)t=1,2,... be sequences of continuous, strictly increasing dis-
tribution functions. Suppose that each xt has distribution Gt and that the xt form a ∗-mixing
sequence of random variables. Suppose furthermore that F̄ (x) = limT→∞

1

T

∑T
t=1 Ft(x) exists for

all x ∈ R and that the limit function is strictly increasing on R. Then

ĜT (x) =
1

T

T
∑

t=1

1{xt ≤ x} −→ F̄ (x) almost surely for all x ∈ R (9)

if and only if (Ft)t=1,2,... is marginally calibrated with respect to (Gt)t=1,2,....

The most obvious graphical device is a plot of ĜT (x) and F̄T (x) versus x. However, it is
often more instructive to plot the difference of the two cumulative distribution functions, as in the
left-hand side of Figure 4 which shows the difference

F̄T (x) − ĜT (x), x ∈ R (10)

for the various forecasters in our initial simulation study. We call this type of display a marginal

calibration plot. Under the hypothesis of marginal calibration, we expect minor fluctuations about
zero only, and this is indeed the case for the perfect forecaster and the climatological forecaster. The
unfocused forecaster and Hamill’s forecaster lack marginal calibration, resulting in major excursions
from zero. The same information can be visualized in terms of quantiles, as on the right-hand side
of Figure 4 which shows the difference,

Q(F̄T , q) − Q(ĜT , q), q ∈ (0, 1) (11)

of the quantile functions for F̄T and ĜT , respectively. Under the hypothesis of marginal calibration,
we again expect minor fluctuations about zero only, and this is the case for the perfect forecaster
and the climatological forecaster. The unfocused forecaster and Hamill’s forecaster show quan-
tile difference functions that increase from negative to positive values, thereby indicating forecast
climates that are too spread out.
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Figure 4: Marginal calibration plot for the perfect forecaster (solid line), climatological forecaster
(short dashes), unfocused forecaster (dot-dashed line) and Hamill’s forecaster (long dashes). The
presentation is in terms of cumulative distribution functions (left) and in terms of quantiles (right),
respectively.

3.3 Assessing sharpness

Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts
only. The more concentrated the predictive distributions, the sharper the forecasts, and the sharper
the better, subject to calibration. To assess sharpness, we use numerical and graphical summaries
of the width of the associated prediction intervals. For instance, Table 4 shows the average width
of the central 50% and 90% prediction intervals for the forecasters in our simulation study. The
perfect forecaster is the sharpest, followed by Hamill’s forecaster, the unfocused forecaster and the
climatological forecaster. A fair comparison requires that the empirical coverage of the prediction
intervals be close to nominal, which we showed to be true in Figure 1 and Table 3. In our simplistic
simulation study, the width of the prediction intervals is fixed, expect for Hamill’s forecaster,
and the tabulation is perfectly adequate. In many types of applications, however, conditional
heteroscedasticity leads to considerable variability in the width of the prediction intervals. The
average width then is often insufficient to characterize sharpness, and we follow Bremnes (2004) in
proposing boxplots as a more instructive graphical device. The resulting sharpness diagram is an
important diagnostic tool, and we present an example thereof in Section 4 below.
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Table 4: Average width of central prediction intervals. The nominal coverages are 50% and 90%,
respectively.

Interval 50% 90%

Perfect forecaster 1.35 3.29
Climatological forecaster 1.91 4.65
Unfocused forecaster 1.52 3.68
Hamill’s forecaster 1.49 3.62

Table 5: Average logarithmic score (LogS) and continuous ranked probability score (CRPS).

LogS CRPS

Perfect forecaster 1.41 0.56
Climatological forecaster 1.75 0.78
Unfocused forecaster 1.53 0.63
Hamill’s forecaster 1.52 0.61

3.4 Proper scoring rules

Scoring rules assign numerical scores to probabilistic forecasts and form attractive summary mea-
sures of predictive performance, in that they address calibration and sharpness simultaneously. We
write S(F, x) for the score assigned when the forecaster issues the predictive distribution F and x
materializes, and we take scores to be penalties that the forecaster wishes to minimize on average.
A scoring rule is proper if the expected value of the penalty S(F, x) for an observation x drawn
from G is minimized if the forecast is perfect, that is, if F = G. It is strictly proper if the minimum
is unique. Propriety is a crucial characteristic of scoring rules; it rewards perfect forecasts and
discourages hedging. Winkler (1977) gave an interesting discussion of the ways in which proper
scoring rules encourage sharp forecasts.

The logarithmic score is the negative of the logarithm of the predictive density evaluated at
the observation (Good 1952; Bernardo 1979). The logarithmic score is proper and has many
desirable properties (Roulston and Smith 2002) yet lacks robustness (Selten 1998; Gneiting and
Raftery 2004). The continuous ranked probability score is defined directly in terms of the predictive
cumulative distribution function, F , namely as

crps(F, x) =

∫ ∞

−∞

(F (y) − 1(y ≥ x))2 dy, (12)

and provides a more robust alternative. Gneiting and Raftery (2004) gave an alternative represen-
tation and showed that

crps(F, x) = EF |X − x| − 1

2
EF

∣

∣X − X ′
∣

∣, (13)

where X and X ′ are independent copies of a random variable with distribution function F and
finite first moment. The representation (13) shows that the continuous ranked probability score
generalizes the absolute error, to which it reduces if F is a point forecast. Furthermore, it can be
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Figure 5: Brier score plot for the perfect forecaster (solid line), climatological forecaster (short
dashes), unfocused forecaster (dot-dashed line), and Hamill’s forecaster (long dashes). The graphs
show the Brier score as a function of the threshold value. The area under the associated curve
equals the CRPS value (14).

reported in the same unit as the observations. The continuous ranked probability score is proper,
and we rank competing forecast procedures based on its average,

CRPS =
1

T

T
∑

t=1

crps(Ft, xt)=

∫ ∞

−∞

BS(y) dy, (14)

where BS(y) = 1

T

∑T
t=1 (Ft(y) − 1{xt ≤ y})2 denotes the Brier score (Brier 1950) for probability

forecasts of the binary events at the threshold value y ∈ R. The Brier score allows for the distinction
of a calibration component and a refinement component (Murphy 1972; Blattenberger and Lad
1985), but the decomposition requires a binning of the forecast probabilities and may not be stable
if the binning is changed.

Table 5 shows the logarithmic score and the continuous ranked probability score for the various
forecasters in our initial simulation study, when averaged over the 10000 replicates of the prediction
experiment. As expected, both scoring rules rank the perfect forecaster highest, followed by Hamill’s
forecaster, the unfocused forecaster and the climatological forecaster. Figure 5 plots the Brier score
for the associated binary forecasts in dependence on the threshold value, thereby illustrating the
integral representation on the right-hand side of (14). This type of display was proposed by Gerds
(2002, Section 2.3) and Schumacher, Graf and Gerds (2003) who called the graphs prediction error
curves.
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4 Case study:

Probabilistic forecasts at the Stateline wind energy center

Wind power is the fastest-growing energy source today. Estimates are that within the next 15
years wind energy will fill about 6% of the electricity supply in the United States. In Denmark,
wind energy already meets 20% of the country’s total energy needs. However, arguments against
the proliferation of wind energy have been put forth, often focusing on the perceived inability to
forecast wind resources with any degree of accuracy. The development of advanced probabilistic
forecast methodologies helps address these concerns.

The prevalent approach to short-range forecasts of wind speed and wind power at prediction
horizons up to a few hours uses on-site observations and autoregressive time series models (Brown,
Katz and Murphy 1984). Gneiting, Larson, Westrick, Genton and Aldrich (2004) proposed a
novel spatio-temporal approach, the regime-switching space-time or RST method, that merges
meteorological and statistical expertise to obtain fully probabilistic forecasts of wind resources.
Henceforth, we illustrate our diagnostic approach to the evaluation of predictive distributions by a
comparison and ranking of three competing forecast methodologies for two-step ahead predictions
of hourly average wind speed at the Stateline wind energy center in the US Pacific Northwest.
The evaluation period is May through November 2003, resulting in a total of 5136 probabilistic
forecasts.

4.1 Predictive distributions for hourly average wind speed

We consider three competing statistical prediction algorithms for two-step ahead probabilistic fore-
casts of hourly average wind speed, wt, at a meteorological tower in close vicinity of the Stateline
wind energy center, which is located on the Vansycle ridge at the border between the states of
Oregon and Washington. The data source is described in Gneiting et al. (2004).

The first method is the persistence forecast, a naive yet surprisingly skillful, nonparametric
reference forecast. The persistence point forecast is simply the most recent observed value of
hourly average wind speed at Stateline. To obtain a predictive distribution, we dress the point
forecast with the 19 most recent observed values of the persistence error, which corresponds to
a naive version of the approach of Roulston and Smith (2003). Hence, the predictive cumulative
distribution function for wt+2 is the empirical distribution function of the set

{max(wt − wt−h + wt−h−2, 0) : h = 0, . . . , 18},

and the associated prediction intervals are readily formed from the order statistics of this set. The
second technique is the autoregressive time series approach which was proposed by Brown, Katz
and Murphy (1984) and has found widespread use since. To apply this technique, we fit and extract
a diurnal trend component based on a sliding 40-day training period, fit a stationary autoregression
to the residual component and find a Gaussian predictive distribution in the customary way. The
Gaussian predictive distribution assigns a typically small positive mass to the negative half-axis,
and in view of the nonnegativity of the predictand we redistribute this mass to wind speed zero.
The details are described in Gneiting et al. (2004), where the method is referred to as the AR-D
technique.

The third method is the regime-switching space-time (RST) approach of Gneiting et al. (2004).
The RST model is parsimonious, yet takes account of all the salient features of wind speed: al-
ternating atmospheric regimes, temporal and spatial autocorrelation, diurnal and seasonal non-
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Figure 6: Probability integral transform (PIT) histogram and sample autocorrelation functions
for the first three centered moments, for persistence forecasts of hourly average wind speed at the
Stateline wind energy center.

stationarity, conditional heteroscedasticity and non-Gaussianity. The method utilizes offsite in-
formation from the nearby meteorological towers at Goodnoe Hills and Kennewick, identifies at-
mospheric regimes at the wind energy site and fits conditional predictive models for each regime,
based on a sliding 45-day training period. Details are given in Gneiting et al. (2004), where the
method is referred to as the RST-D-CH technique. Any minor discrepancies in the performance
measures reported henceforth and in Gneiting et al. (2004) stem from the use of R versus Splus and
the associated slight differences in the optimization algorithms used for estimating the predictive
models.

4.2 Assessing calibration

Figures 6, 7 and 8 show the probability integral transform (PIT) histograms for the three forecast
techniques, along with the sample autocorrelation functions for the first three centered moments
of the PIT values and the associated Bartlett confidence intervals. The PIT histograms for the
persistence forecasts and for the RST forecasts appear uniform. The histogram for the autoregres-
sive forecasts is hump shaped, thereby suggesting departures from probabilistic calibration. Table
6 shows the associated empirical coverage of the 50% and 90% central prediction intervals.
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Figure 7: Same as Figure 6, but for autoregressive forecasts.

The PIT values for perfect 2-step ahead forecasts are at most 1-dependent, and the sample
autocorrelation functions for the RST forecasts seem compatible with this assumption. The sample
autocorrelations for the persistence forecasts are nonnegligible at lag 2, and the centered second
moment of the PIT values shows notable negative correlations at lags between 15 and 20 hours.
These features indicate a lack of fit of the predictive model but seem hard to interpret diagnos-
tically. The respective sample autocorrelations for the autoregressive forecasts are positive and
nonnegligible at lags up to 5 hours, thereby pointing at conditional heteroscedasticity in the wind
speed series. Indeed, Gneiting et al. (2004) showed that the autoregressive forecasts improve when
a conditionally heteroscedastic model is employed. In the current, classical autoregressive formu-
lation the predictive variance varies as a result of the sliding training period, but high-frequency
changes in the predictability are not taken into account.

Figure 9 shows marginal calibration plots for the three forecasts, both in terms of cumulative
distribution functions and in terms of quantiles. The display is in analogy to Figure 4 and the
graphs show the differences defined in (10) and (11), respectively. The graphs for all three forecasts
show nonnegligible excursions from zero, particularly at small wind speeds, and the excursions
are most pronounced for the autoregressive forecasts. The lack of predictive model fit can be ex-
plained by a closer examination of Figure 10, which shows the empirical cumulative distribution
function, F̄T , of hourly average wind speed during the evaluation period. Hourly average wind
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Figure 8: Same as Figure 6, but for RST forecasts.

speeds less than 1 m · s−1 were almost never observed. This is incompatible with the mean predic-
tive distribution functions, ĜT , for the three methods, each of which assigns positive point mass
to wind speed zero, resulting in the initial positive excursions in the left-hand plot of Figure 9.
This issue applies to all three techniques, and for the persistence forecasts and the autoregressive
forecasts it is not clear how it could be addressed. The RST method fits cut-off normal predictive
distributions that are concentrated on the nonnegative half-axis and involve a point mass at zero.
The marginal calibration plot suggests the use of truncated normal predictive distributions as a
promising alternative.

4.3 Assessing sharpness

Sharpness concerns the concentration of the predictive distributions, and we consider the central
prediction interval at the 50% and 90% level, respectively. Table 6 shows that the empirical
coverage is close to nominal for all three techniques; hence, an assessment of the sharpness of the
predictive distributions in terms of the width of the prediction intervals is fair. The boxplots in the
sharpness diagram of Figure 11 show the 5th, 25th, 50th, 75th and 95th percentile of the width of
the interval for the 5136 predictive distributions during the evaluation period, and Table 7 shows
the associated average width. The prediction intervals for the persistence forecasts vary the most
in width, followed by the RST forecasts and the autoregressive forecasts. The RST forecasts are
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Figure 9: Marginal calibration plot for persistence forecasts (dashed line), autoregressive forecasts
(dot-dashed line) and RST forecasts (solid line) of hourly average wind speed at the Stateline wind
energy center in terms of cumulative distribution functions (left) and in terms of quantiles (right),
respectively, in m · s−1.
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wind energy center in May through November 2003, in m · s−1.
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Table 6: Empirical coverage of central prediction intervals. The nominal coverages are 50% and
90%, respectively.

Interval 50% 90%

Persistence forecast 50.9% 89.2%
Autoregressive forecast 55.6% 90.4%
RST forecast 51.2% 88.4%

clearly the sharpest, with prediction intervals that are about 20% shorter on average than those
for the autoregressive forecasts.

4.4 Continuous ranked probability score

Table 8 shows the mean continuous ranked probability score or CRPS value (14) for the various
forecasts. We report the scores month by month, which allows for an assessment of seasonal effects
and straightforward tests of the null hypothesis of no difference in the predictive performance of
competing probabilistic forecasts. For instance, the RST forecasts had a lower CRPS value than the
autoregressive forecasts in each month during the evaluation period, May through November 2003.
Under the null hypothesis of equal predictive performance this happens with probability ( 1

2
)7 = 1

128

only. Similarly, the autoregressive forecasts outperformed the persistence forecasts in May through
October 2003, but not in November 2003. Clearly, various other tests can be employed, but one
needs to be careful to avoid dependencies in the forecast differentials. In our situation, the results
for distinct months can be considered independent for all practical purposes. Diebold and Mariano
(1995) gave a thoughtful discussion of these issues, and we refer to their work for a comprehensive
account of tests of predictive performance. Figure 12 illustrates the Brier score decomposition (14)
of the CRPS value for the entire evaluation period. The RST forecasts outperform the persistence
forecasts and the autoregressive forecasts at all thresholds.

We noted in Section 3.4 that the continuous ranked probability score generalizes the absolute
error, and reduces to the latter for point forecasts. Table 9 shows the mean absolute error (MAE) for
the point forecasts associated with the persistence, autoregressive and RST techniques, respectively.
The persistence point forecast is simply the most recent observed value of the hourly average wind
speed at the Stateline wind energy center. The autoregressive point forecast is the mean of the
associated predictive distribution, and similarly for the RST forecast. The results for the predictive
median are very similar. The RST point forecasts outperform the autoregressive point forecasts,
and the autoregressive point forecasts outperform the persistence point forecasts. The MAE values
in Table 9 and the CRPS values in Table 8 are reported in the same unit as the wind speed
measurements, that is, in m · s−1, and can be directly compared. The insights that the monthly
scores provide are indicative of the potential benefits of thoughtful stratification.

The CRPS and MAE values establish a clear-cut ranking of the competing forecast method-
ologies that places the RST technique first, followed by the autoregressive and the persistence
forecasts. The RST method also performed best in terms of probabilistic calibration and marginal
calibration, and the RST forecasts were much sharper than the autoregressive and the persistence
forecasts. The diagnostic approach furthermore points at forecast deficiencies and suggests poten-
tial improvements to the predictive models. In particular, the marginal calibration plots in Figure
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Table 7: Average width of central prediction intervals, in m · s−1. The nominal coverages are 50%
and 90%, respectively.

Interval 50% 90%

Persistence forecast 2.63 7.51
Autoregressive forecast 2.74 6.55
RST forecast 2.20 5.31

PS 50 AR 50 RST 50 PS 90 AR 90 RST 90

0
5

10
15

Figure 11: Sharpness diagram for persistence forecasts (PS), autoregressive forecasts (AR) and
RST forecasts of hourly average wind speed at the Stateline wind energy center. The boxplots
show the 5th, 25th, 50th, 75th and 95th percentile of the width of the central prediction interval,
in m · s−1. The nominal coverage is 50% and 90%, respectively.
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Table 8: Average continuous ranked probability score (CRPS) for probabilistic forecasts of hourly
average wind speed at the Stateline wind energy center in March through November 2003, month
by month and for the entire evaluation period, in m · s−1.

CRPS May Jun Jul Aug Sep Oct Nov Mar–Nov

Persistence forecast 1.16 1.08 1.29 1.21 1.20 1.29 1.16 1.20
Autoregressive forecast 1.12 1.02 1.10 1.11 1.11 1.22 1.13 1.12
RST forecast 0.96 0.85 0.95 0.95 0.97 1.08 1.00 0.97

Table 9: Mean absolute error (MAE) for point forecasts of hourly average wind speed at the
Stateline wind energy center in March through November 2003, month by month and for the entire
evaluation period, in m · s−1.

MAE May Jun Jul Aug Sep Oct Nov Mar–Nov

Persistence forecast 1.60 1.45 1.74 1.68 1.59 1.68 1.51 1.61
Autoregressive forecast 1.53 1.38 1.50 1.54 1.53 1.68 1.54 1.53
RST forecast 1.32 1.18 1.33 1.31 1.36 1.48 1.37 1.34

9 suggest a modified version of the RST technique that uses truncated normal rather than cut-off
normal predictive distributions. This modification yields small but consistent improvements in the
predictive performance of the RST method, and we intend to report details in subsequent work.

5 Discussion

Our paper addressed the important issue of evaluating predictive performance for probabilistic fore-
casts of continuous variables. Following the lead of Dawid (1984) and Diebold, Gunther and Tay
(1998), predictive distributions have traditionally been evaluated within the framework of checks
for perfect forecasts, consisting of an assessment on the uniformity and independence of the proba-
bility integral transform. We introduced the more pragmatic and flexible paradigm of maximizing

sharpness subject to calibration. Calibration refers to the statistical consistency between the pre-
dictive distributions and the associated observations and is a joint property of the predictions and
the values that materialize. Sharpness refers to the concentration of the predictive distributions
and is a property of the forecasts only.

We interpreted probabilistic forecasting within a game-theoretic framework that allowed us
to distinguish probabilistic calibration, exceedance calibration and marginal calibration, and we
developed diagnostic tools for evaluating and comparing probabilistic forecasters. Probabilistic
calibration corresponds to the uniformity of the probability integral transform (PIT), and the
PIT histogram remains a key tool in the diagnostic approach to forecast evaluation. In addition,
we proposed the use of marginal calibration plots, sharpness diagrams and proper scoring rules,
which form powerful tools for learning about forecast deficiencies and ranking competing forecast
methodologies. Our own applied work on probabilistic forecasting has benefitted immensely from
these tools, as documented in Section 4 and in the partial applications in Gneiting et al. (2004),
Raftery, Gneiting, Balabdaoui and Polakowski (2005) and Gneiting et al. (2005). Furthermore,
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Figure 12: Brier score plot for persistence forecasts (dashed line), autoregressive forecasts (dot-
dashed line) and RST forecasts (solid line) of hourly average wind speed at the Stateline wind
energy center, in m · s−1. The graphs show the Brier score as a function of the threshold value. The
area under the associated curve equals the CRPS value (14).

predictive distributions can be reduced to point forecasts, or to probability forecasts of binary
events, and the associated forecasts can be assessed using the diagnostic devices described by
Murphy, Brown and Chen (1989) and Murphy and Winkler (1992), among others.

If we were to reduce our conclusions to a single recommendation, we would close with a call for
the assessment of sharpness, particularly when the goal is that of ranking. Previous comparative
studies of the predictive performance of probabilistic forecasts have largely focused on calibration.
For instance, Moyeed and Papritz (2002) compared spatial prediction techniques, Clements and
Smith (2000) and Boero and Marrocu (2004) evaluated linear and non-linear time series models,
Garrat et al. (2003) assessed macroeconomic forecast models, and Bauwens et al. (2004) studied
the predictive performance of financial duration models. In each of these works, the assessment
took place in terms of the predictive performance of the associated point forecasts, and in terms of
the uniformity of the probability integral transform. We contend that comparative studies of these
types call for routine assessments of sharpness, in the form of sharpness diagrams and through the
use of proper scoring rules.

Despite the frequentist flavor of our diagnostic approach, calibration and sharpness are proper-
ties that are relevant to Bayesian forecasters as well. Rubin (1984, pp. 1161 and 1160) noted that
“the probabilities attached to Bayesian statements do have frequency interpretations that tie the
statements to verifiable real world events.” Consequently, a “Bayesian is calibrated if his proba-
bility statements have their asserted coverage in repeated experience.” Gelman, Meng and Stern
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(1996) developed Rubin’s posterior predictive approach, proposed posterior predictive checks as
Bayesian counterparts to the classical tests for goodness of fit, and advocated their use in judging
the fit of Bayesian models. This relates to our diagnostic approach, which emphasizes the need for
understanding the ways in which predictive distributions fail or succeed. Indeed, the diagnostic
devices posited herein form powerful tools for Bayesian as well as frequentist model diagnostics and
model choice. Tools such as the PIT histogram, marginal calibration plots, sharpness diagrams and
proper scoring rules are widely applicable, since they are nonparametric, do not depend on nested
models, allow for structural change, and apply to predictive distributions that are represented by
samples, as they arise in a rapidly growing number of Markov chain Monte Carlo methodologies and
ensemble prediction systems. In the time series context, the predictive framework is natural and
the model fit can be assessed through the performance of the time-forward predictive distributions
(Smith 1985; Shephard 1994; Frühwirth-Schnatter 1996; Bouwens et al. 2004). In other types of
situations, a cross-validatory approach can often be used fruitfully (Dawid 1984a, p. 288; Gneiting
and Raftery 2004).

Appendix

Proof of Theorem 1

Consider the random variable U = F (x1)
z1F (x2)

z2 · · ·F (xT )zT where x1 ∼ G1, . . . , xT ∼ GT and
(z1, . . . , zT )′ is multinomial with equal probabilities. The finite probabilistic calibration condition
implies that U is uniformly distributed. By the variance decomposition formula,

var(F ) = var(F−1(U)) = E
[

var
(

F−1(U) |z1, . . . , zT

)]

+ var
[

E
(

F−1(U) |z1, . . . , zT

)]

.

The first term in the decomposition equals

1

T

T
∑

t=1

var(xt) =
1

T

T
∑

t=1

var(Gt)

and the second term is nonnegative and vanishes if and only if E(G1) = · · · = E(GT ).

Proof of Theorem 2

For p ∈ (0, 1) and t = 1, 2, . . ., put Yt = 1{pt < p} − Gt ◦ F−1
t (p) and note that E(Yt) = 0. By

Theorem 2 of Blum et al. (1963),

lim
T→∞

1

T

T
∑

t=1

Yt = lim
T→∞

1

T

T
∑

t=1

(

1{pt < p} − Gt ◦ F−1
t (p)

)

= 0

almost surely. The uniqueness of the limit implies that (6) is equivalent to the probabilistic cali-
bration condition (3).

Proof of Theorem 3

For x ∈ R let q = F̄ (x), and for t = 1, 2, . . . put qt = F̄ (xt). Then

ĜT (x) =
1

T

T
∑

t=1

1{xt ≤ x} =
1

T

T
∑

t=1

1{qt ≤ q}.
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By Theorem 2 with Ft = F̄ for t = 1, 2, . . . we have that 1

T

∑T
t=1 1{qt ≤ q} → q almost surely if

and and only if 1

T

∑T
t=1 Gt ◦ F̄−1(q) → q almost surely; hence, marginal calibration is equivalent to

(9).
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